extension | φ:Q→Aut N | d | ρ | Label | ID |
C6.1(C22×D5) = D5×Dic6 | φ: C22×D5/D10 → C2 ⊆ Aut C6 | 120 | 4- | C6.1(C2^2xD5) | 240,125 |
C6.2(C22×D5) = D20⋊5S3 | φ: C22×D5/D10 → C2 ⊆ Aut C6 | 120 | 4- | C6.2(C2^2xD5) | 240,126 |
C6.3(C22×D5) = D20⋊S3 | φ: C22×D5/D10 → C2 ⊆ Aut C6 | 120 | 4 | C6.3(C2^2xD5) | 240,127 |
C6.4(C22×D5) = S3×Dic10 | φ: C22×D5/D10 → C2 ⊆ Aut C6 | 120 | 4- | C6.4(C2^2xD5) | 240,128 |
C6.5(C22×D5) = D12⋊D5 | φ: C22×D5/D10 → C2 ⊆ Aut C6 | 120 | 4 | C6.5(C2^2xD5) | 240,129 |
C6.6(C22×D5) = D60⋊C2 | φ: C22×D5/D10 → C2 ⊆ Aut C6 | 120 | 4+ | C6.6(C2^2xD5) | 240,130 |
C6.7(C22×D5) = D15⋊Q8 | φ: C22×D5/D10 → C2 ⊆ Aut C6 | 120 | 4 | C6.7(C2^2xD5) | 240,131 |
C6.8(C22×D5) = D6.D10 | φ: C22×D5/D10 → C2 ⊆ Aut C6 | 120 | 4 | C6.8(C2^2xD5) | 240,132 |
C6.9(C22×D5) = D12⋊5D5 | φ: C22×D5/D10 → C2 ⊆ Aut C6 | 120 | 4- | C6.9(C2^2xD5) | 240,133 |
C6.10(C22×D5) = C12.28D10 | φ: C22×D5/D10 → C2 ⊆ Aut C6 | 120 | 4+ | C6.10(C2^2xD5) | 240,134 |
C6.11(C22×D5) = C4×S3×D5 | φ: C22×D5/D10 → C2 ⊆ Aut C6 | 60 | 4 | C6.11(C2^2xD5) | 240,135 |
C6.12(C22×D5) = D5×D12 | φ: C22×D5/D10 → C2 ⊆ Aut C6 | 60 | 4+ | C6.12(C2^2xD5) | 240,136 |
C6.13(C22×D5) = S3×D20 | φ: C22×D5/D10 → C2 ⊆ Aut C6 | 60 | 4+ | C6.13(C2^2xD5) | 240,137 |
C6.14(C22×D5) = C20⋊D6 | φ: C22×D5/D10 → C2 ⊆ Aut C6 | 60 | 4 | C6.14(C2^2xD5) | 240,138 |
C6.15(C22×D5) = C2×D5×Dic3 | φ: C22×D5/D10 → C2 ⊆ Aut C6 | 120 | | C6.15(C2^2xD5) | 240,139 |
C6.16(C22×D5) = Dic5.D6 | φ: C22×D5/D10 → C2 ⊆ Aut C6 | 120 | 4 | C6.16(C2^2xD5) | 240,140 |
C6.17(C22×D5) = C30.C23 | φ: C22×D5/D10 → C2 ⊆ Aut C6 | 120 | 4- | C6.17(C2^2xD5) | 240,141 |
C6.18(C22×D5) = C2×S3×Dic5 | φ: C22×D5/D10 → C2 ⊆ Aut C6 | 120 | | C6.18(C2^2xD5) | 240,142 |
C6.19(C22×D5) = Dic3.D10 | φ: C22×D5/D10 → C2 ⊆ Aut C6 | 120 | 4 | C6.19(C2^2xD5) | 240,143 |
C6.20(C22×D5) = C2×D30.C2 | φ: C22×D5/D10 → C2 ⊆ Aut C6 | 120 | | C6.20(C2^2xD5) | 240,144 |
C6.21(C22×D5) = C2×C15⋊D4 | φ: C22×D5/D10 → C2 ⊆ Aut C6 | 120 | | C6.21(C2^2xD5) | 240,145 |
C6.22(C22×D5) = C2×C3⋊D20 | φ: C22×D5/D10 → C2 ⊆ Aut C6 | 120 | | C6.22(C2^2xD5) | 240,146 |
C6.23(C22×D5) = C2×C5⋊D12 | φ: C22×D5/D10 → C2 ⊆ Aut C6 | 120 | | C6.23(C2^2xD5) | 240,147 |
C6.24(C22×D5) = C2×C15⋊Q8 | φ: C22×D5/D10 → C2 ⊆ Aut C6 | 240 | | C6.24(C2^2xD5) | 240,148 |
C6.25(C22×D5) = D5×C3⋊D4 | φ: C22×D5/D10 → C2 ⊆ Aut C6 | 60 | 4 | C6.25(C2^2xD5) | 240,149 |
C6.26(C22×D5) = S3×C5⋊D4 | φ: C22×D5/D10 → C2 ⊆ Aut C6 | 60 | 4 | C6.26(C2^2xD5) | 240,150 |
C6.27(C22×D5) = D10⋊D6 | φ: C22×D5/D10 → C2 ⊆ Aut C6 | 60 | 4+ | C6.27(C2^2xD5) | 240,151 |
C6.28(C22×D5) = C2×Dic30 | φ: C22×D5/C2×C10 → C2 ⊆ Aut C6 | 240 | | C6.28(C2^2xD5) | 240,175 |
C6.29(C22×D5) = C2×C4×D15 | φ: C22×D5/C2×C10 → C2 ⊆ Aut C6 | 120 | | C6.29(C2^2xD5) | 240,176 |
C6.30(C22×D5) = C2×D60 | φ: C22×D5/C2×C10 → C2 ⊆ Aut C6 | 120 | | C6.30(C2^2xD5) | 240,177 |
C6.31(C22×D5) = D60⋊11C2 | φ: C22×D5/C2×C10 → C2 ⊆ Aut C6 | 120 | 2 | C6.31(C2^2xD5) | 240,178 |
C6.32(C22×D5) = D4×D15 | φ: C22×D5/C2×C10 → C2 ⊆ Aut C6 | 60 | 4+ | C6.32(C2^2xD5) | 240,179 |
C6.33(C22×D5) = D4⋊2D15 | φ: C22×D5/C2×C10 → C2 ⊆ Aut C6 | 120 | 4- | C6.33(C2^2xD5) | 240,180 |
C6.34(C22×D5) = Q8×D15 | φ: C22×D5/C2×C10 → C2 ⊆ Aut C6 | 120 | 4- | C6.34(C2^2xD5) | 240,181 |
C6.35(C22×D5) = Q8⋊3D15 | φ: C22×D5/C2×C10 → C2 ⊆ Aut C6 | 120 | 4+ | C6.35(C2^2xD5) | 240,182 |
C6.36(C22×D5) = C22×Dic15 | φ: C22×D5/C2×C10 → C2 ⊆ Aut C6 | 240 | | C6.36(C2^2xD5) | 240,183 |
C6.37(C22×D5) = C2×C15⋊7D4 | φ: C22×D5/C2×C10 → C2 ⊆ Aut C6 | 120 | | C6.37(C2^2xD5) | 240,184 |
C6.38(C22×D5) = C6×Dic10 | central extension (φ=1) | 240 | | C6.38(C2^2xD5) | 240,155 |
C6.39(C22×D5) = D5×C2×C12 | central extension (φ=1) | 120 | | C6.39(C2^2xD5) | 240,156 |
C6.40(C22×D5) = C6×D20 | central extension (φ=1) | 120 | | C6.40(C2^2xD5) | 240,157 |
C6.41(C22×D5) = C3×C4○D20 | central extension (φ=1) | 120 | 2 | C6.41(C2^2xD5) | 240,158 |
C6.42(C22×D5) = C3×D4×D5 | central extension (φ=1) | 60 | 4 | C6.42(C2^2xD5) | 240,159 |
C6.43(C22×D5) = C3×D4⋊2D5 | central extension (φ=1) | 120 | 4 | C6.43(C2^2xD5) | 240,160 |
C6.44(C22×D5) = C3×Q8×D5 | central extension (φ=1) | 120 | 4 | C6.44(C2^2xD5) | 240,161 |
C6.45(C22×D5) = C3×Q8⋊2D5 | central extension (φ=1) | 120 | 4 | C6.45(C2^2xD5) | 240,162 |
C6.46(C22×D5) = C2×C6×Dic5 | central extension (φ=1) | 240 | | C6.46(C2^2xD5) | 240,163 |
C6.47(C22×D5) = C6×C5⋊D4 | central extension (φ=1) | 120 | | C6.47(C2^2xD5) | 240,164 |